Pages 932-938

β-ENDORPHIN-(1-27): ACETYLATION OF ALPHA-AMINO GROUPS ENHANCES IMMUNOREACTIVITY BUT DIMINISHES ANALGESIC AND RECEPTOR-BINDING ACTIVITIES WITH NO CHANGES IN CIRCULAR DICHROISM SPECTRA

Choh Hao Li, Liang-Fu Tseng*, Michael D. Jibson R. Glenn Hammonds, Jr., Donald Yamashiro and Milan Zaoral

Hormone Research Laboratory
University of California, San Francisco, CA 94143

*Department of Pharmacology
The Medical College of Wisconsin, Milwaukee, WI 53233

Received October 21,1980

SUMMARY

Four synthetic $\beta_h\text{-endorphin}$ analogs have been assessed for their immunoreactivity, receptor-binding activity and analgesic potency as well as their $\alpha\text{-helical}$ content by circular dichroism. These synthetic analogs are: $\beta_h\text{-endorphin-}(1\text{-}27)$, $[Gln^8]-\beta_h\text{-endorphin-}(1\text{-}27)$, $[Ac\text{-Tyr}^1]-\beta_h\text{-endorphin-}(1\text{-}27)$ and $[Ac\text{-Tyr}^1,Gln^8]-\beta_h\text{-endorphin-}(1\text{-}27)$. Results show that acetylation caused 3.8-8.8 X increase of immunoreactivity in comparison with the parent analog but abolished receptor-binding and analgesic activities. In addition, acetylation does not alter circular dichroism spectra in 90% methanol. Thus, there is no correlation of $\alpha\text{-helix}$ content with biological activities of these four synthetic $\beta_h\text{-endorphin}$ analogs.

It has been recently shown (1) that omission of a single amino acid residue in position 14, 15 or 20 of the $\beta\text{-EP}$ structure (see Fig. 1) abolishes the immunoreactivity but retains ileal opiate, receptor-binding and analgesic activities. In an effort to further delineate the structure-activity relationship of β_h -EP, we have synthesized four analogs: β_h -EP-(1-27), [Gln^8]- β_h -EP-(1-27), [Ac-Tyr^1]- β_h -EP-(1-27) and [Ac-Tyr^1,Gln^8]- β_h -EP-(1-27). Biological investigations of these analogs revealed that immunoreactivity of β_h -EP-(1-27) and [Gln^8]- β_h -EP-(1-27) was greatly

Abbreviations: β_h -EP, human β -endorphin; CD, circular dichroism

HUMAN: H-Tyr-GLY-GLY-PHE-MET-THR-SER-GLU-LYS-SER-

15 GLN-THR-PRO-LEU-VAL-THR-LEU-PHE-LYS-ASN-

25 ALA-ILE-ILE-LYS-ASN-ALA-TYR-LYS-LYS-GLY-GLU-OH

PORCINE: VAL HIS. GLN-OH

CAMEL, OVINE, BOVINE: ILE HIS GLN-OH

AMINO ACID SEQUENCE OF HUMAN, PORCINE, CAMEL, OVINE, AND

BOVINE #-ENDORPHINS

Fig. 1. Amino acid sequence of $\boldsymbol{\beta}_{h}\text{-endorphin}$

increased by acetylation while receptor-binding and analgesic activities were nearly abolished. CD spectra of non-acetylated and acetylated peptides indicate no changes in α -helical content. Results of these studies are reported herein.

MATERIALS AND METHODS

 $\beta_h{\text{-}Endorphin},\ \beta_h{\text{-}EP^-(1-27)}$ and analogs were synthesized by the solid-phase method as previously described (2,3). Immuno-reactivity was assessed by radioimmunoassay using the published procedure (4,5). The opiate receptor-binding assay was performed according to the procedure recently described (6,7) using $^{3}\text{H}_2{\text{-}Tyr}^{27}\text{l}_{-}\beta_h{\text{-}EP}$ (8) as the primary ligand and synthetic $\beta_h{\text{-}EP}$ (2) as standard competing ligand. The analgesic activity in vivo was estimated in mice by the tail-flick method (9) as described (10). Circular dichroism (CD) spectra were obtained on a Cary Model 60 spectropolarimeter equipped with a Model 6002 CD attachment. Details of all procedures and methods of calculation have been described (11). Methanol was of spectral grade.

RESULTS AND DISCUSSION

Biological activity of β_h -EP-(1-27) and analogs as assayed by various procedures is summarized in Table 1. In comparison with β_h -EP, deletion of four amino acids from the COOH-terminus caused a loss of 34% immunoreactivity, 70% of receptor binding activity and nearly 98% analgesic potency. Substitution of glutamine in position 8 (Glu) elevated immunoreactivity and

Table 1 Biological Activity of Synthetic $^{\rm b}_{\rm h}\text{-Endorphin-(1-27)}$ and Analogs

	Immunor	Immunoreactivity	Recepto	Receptor-binding Activity	Analgesic Activity	tivity
Synthetic Peptides	IC ₅₀ ª	Relative Activity	IC ₅₀ R	Relative Potency	AD ₅₀	Relative Potency
8 _h -Endorphin	116	100	0.62	100	3.11 (1.40-5.53)	100
B _h -EP-(1-27)	175	99	2.05	30	2143	۶ 2
[Gln ⁸]-8 _h -EP-(1-27)	141	82	0.68	06	26.8 (14.0-51.1)	12
$[Ac-Tyr^{1}]-\beta_{h}-EP-(1-27)$	45	252	1655	0.04	>141	< 2
$[Ac-Tyr^{1},Gln^{8}]-\beta_{h}-EP-(1-27)$	16	725	950	0.07	>141	< 2
-						
a						

^aIC₅₀ in 10⁻¹² M ^bIC₅₀ in 10⁻⁹ M

 $^{\rm C}_{\rm AD_{50}}$ in $^{\rm 10^{-10}}$ M (95% confidence limit)

receptor-binding activity of β_h -EP-(1-27) to values nearly as active as β_h -EP. However, the analgesic potency of [Gln 8]- β_h -EP-(1-27) increased from 2% to 12% but it was still far below the potency for β_h -EP. Earlier studies have already shown that replacement of Glu-8 by glutamine enhances the receptor-binding activity of [Gly 31]- β_h -EP-Gly-Gly-NH $_2$ (12).

As shown in Table 1, acetylation of $\alpha\text{-NH}_2$ group in both $\beta_h\text{-EP-}(1\text{-}27)$ and $[\text{Gln}^8]$ - $\beta_h\text{-EP-}(1\text{-}27)$ increased markedly the immunoreactivity. This is clearly evident as illustrated in Fig. 2. Apparently the presence of the positively charged $\alpha\text{-amino}$ group interferes with the antigen-activity interaction and blocking of the $\alpha\text{-NH}_2$ group by acetylation removed the interference. We recently reported that the immunoreactivity of $\beta_h\text{-EP}$ is abolished by omission of a single residue in position 14, 15 or 20 of the 31-amino acid sequence (1). Present data show that modification of a single residue (Tyr-1) in $\beta_h\text{-EP-}(1\text{-}27)$ and $[\text{Gln}^8]$ - $\beta_h\text{-EP-}(1\text{-}27)$ induces impressive elevation of immunoreactivity.

Both receptor-binding and analgesic activities of $\beta_h\text{-EP-}$ (1-27) and [Gln $^8]$ - $\beta_h\text{-EP-}$ (1-27) are drastically decreased by

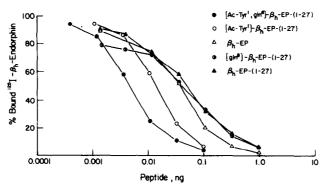


Fig. 2. Immunoreactivity of β_h -EP-(1-27) and analogs relative to β_h -EP based on radioimmunoassay with rabbit antiserum to β_h -EP.

acetylation (Table 1). This is not surprising as it is known that any modification of Tyr-1 in β -EP lowers opiate activities (13,14).

β-Endorphin in water shows little secondary structure as evidenced by CD spectra (15,16). Both methanol (15) and trifluoroethanol (16) promote the formation of α-helix in as much as one-half of the peptide molecule. CD spectra of β_h -EP analogs with various chain lengths in 90% methanol indicated that β_h -EP-(1-30) had nearly full helical structure when compared with β_h -EP (17). On the other hand, β_h -EP-(1-30) had only 72% analgesic activity of the parent molecule (18). It is therefore of interest to examine the CD spectra of [Gln⁸]- β_h -EP-(1-27) and [Ac-Tyr¹,Gln⁸]- β_h -EP-(1-27) as it is possible that acetylation may cause a change of α-helical content in 90% methanol and, in turn, induce alteration of biological profile.

Figure 3 presents the CD spectra of $[Gln^8]-\beta_h$ -EP-(1-27) and $[Ac-Tyr^1,Gln^8]-\beta_h$ -EP in 90% methanol. The α -helical content of these two analogs was estimated, using parameters for aqueous solutions (11), to be 20-25% from $[\Theta]_{221}$ mu and 35-40% from

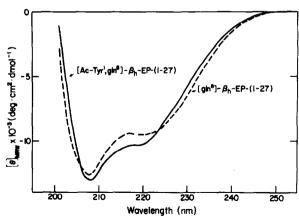


Fig. 3. CD spectra of $[Gln^8]-\beta_h-EP-(1-27)$ and $[Ac-Tyr^1,Gln^8]-\beta_h-EP-(1-27)$ in the region of amide bond absorption in 90% methanol.

The latter value may be too high due to contributions [⊖]_{209 mu}. from a random-coil band in the same spectral region. At any rate, there is no difference in CD spectra between $[Gln^8]-\beta_h$ -EP-(1-27) and its acetylated analog in 90% methanol. It may be concluded that the enhancement of immunoreactivity and the loss of analgesic and receptor-binding activities by acetylation of $\alpha\textsc{-NH}_2$ group in these opioid peptides are not due to the change of α -helix forming potential. Although a correlation between α-helix content in trifluoroethanol and biological activity has been reported (19), this study indicates that retention of α-helical comformation is not sufficient to maintain full biological activity.

ACKNOWLEDGMENT

We thank Katherine Hines for expert technical assistance. This work was supported in part by the National Institute of Mental Health (MH-30245 to C.H.L.), National Institute of Health (GM-2907 to C.H.L.), National Institute of Drug Abuse (DA-02352 to L.F.T.) and the Hormone Research Foundation. of us (M.D.J.) is a recipient of a scholarship from the Northern California Chapter of the ARCS Foundation.

REFERENCES

- Li, C. H., Yamashiro, D., Tseng, L-F., Chang, W-C., and Ferrara, P. (1980) Proc. Natl. Acad. Sci. USA 77, 3211-3214.
- Li, C. H., Yamashiro, D., Tseng, L-F., and Loh, H. H. (1977) J. Med. Chem. 20, 325-328. 2.
- 3. Zaoral, M., Yamashiro, D., Hammonds, Jr., R. G., and
- Li, C. H. Int. J. Peptide Protein Res., in press. Li, C. H., Rao, A. J., Doneen, B. A., and Yamashiro, D. (1977) Biochem. Biophys. Res. Commun. 75, 576-580. Chang, W-C., Yeung, H. W., and Li, C. H. (1979) Int. J. 4.
- 5. Peptide Protein Res. 13, 278-281.
- Ferrara, P., Houghten, R., and Li, C. H. (1979) Biochem. Biophys. Res. Commun. 89, 786-792. Ferrara, P. and Li, C. H. (1980) Int. J. Peptide Protein 6.
- 7. Res. 16, 66-69.

- Houghten, R. A. and Li, C. H. (1978) Int. J. Peptide Protein Res. 12, 325-326.
- 9. D'Amour, F. E. and Smith, D. L. (1941) J. Pharmacol. Exp.
- Ther. 72, 74-79.
 Loh, H. H., Tseng, L-F., Wei, E., and Li, C. H. (1976)
 Proc. Natl. Acad. Sci. USA 73, 2895-2898.
 Bewley, T. A., Brovetto-Cruz, J., and Li, C. H. (1969) 10.
- 11.
- Biochemistry 8, 4701-4708.
 Yamashiro, D., Ferrara, P., and Li, C. H. (1980) Int. J. 12.
- Peptide Protein Res. 16, 70-74.

 Yamashiro, D., Tseng, L-F., Doneen, B. A., Loh, H. H., and Li, C. H. (1977) Int. J. Peptide Protein Res. 10, 159-13. 166.
- 14. Doneen, B. A., Chung, D., Yamashiro, D., Law, P. Y., Loh, H. H., and Li, C. H. (1977) Biochem. Biophys. Res. Commun. <u>74</u>, 656-662.
- 15. Yang, J. T., Bewley, T. A., Chen, G. C., and Li, C. H. (1977) Proc. Natl. Acad. Sci. USA 74, 3235-3238.
- Hollat, M., Kajtar, M., and Graf, L. (1977) FEBS Letters 16. 74, 185-189.
- Li, C. H. (1979) In Peptides-Proceedings of the Sixth 17. American Peptide Symposium (Gross, E. and Meienhofer, J., eds.) Pierce Chemical Company, Rockford, Illinois, pp. 823-
- Li, C. H., Tseng, L-F., Yamashiro, D. (1978) Biochem. 18. Biophys. Res. Commun. 85, 795-800.
- Gráf, L., Hollósi, M., Barna, I., Hermann, I., Borvendég, 19. J., and Ling, N. (1980) Biochem. Biophys. Res. Commun. 95, 1623-1627.